Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Zhonghua Yu Fang Yi Xue Za Zhi ; 56(4): 474-478, 2022 Apr 06.
Article in Chinese | MEDLINE | ID: covidwho-1834947

ABSTRACT

Objective: To analyze the course of disease and epidemiological parameters of COVID-19 and provide evidence for making prevention and control strategies. Methods: To display the distribution of course of disease of the infectors who had close contacts with COVID-19 cases from January 1 to March 15, 2020 in Guangdong Provincial, the models of Lognormal, Weibull and gamma distribution were applied. A descriptive analysis was conducted on the basic characteristics and epidemiological parameters of course of disease. Results: In total, 515 of 11 580 close contacts were infected, with an attack rate about 4.4%, including 449 confirmed cases and 66 asymptomatic cases. Lognormal distribution was fitting best for latent period, incubation period, pre-symptomatic infection period of confirmed cases and infection period of asymptomatic cases; Gamma distribution was fitting best for infectious period and clinical symptom period of confirmed cases; Weibull distribution was fitting best for latent period of asymptomatic cases. The latent period, incubation period, pre-symptomatic infection period, infectious period and clinical symptoms period of confirmed cases were 4.50 (95%CI:3.86-5.13) days, 5.12 (95%CI:4.63-5.62) days, 0.87 (95%CI:0.67-1.07) days, 11.89 (95%CI:9.81-13.98) days and 22.00 (95%CI:21.24-22.77) days, respectively. The latent period and infectious period of asymptomatic cases were 8.88 (95%CI:6.89-10.86) days and 6.18 (95%CI:1.89-10.47) days, respectively. Conclusion: The estimated course of COVID-19 and related epidemiological parameters are similar to the existing data.


Subject(s)
COVID-19 , Contact Tracing , Cohort Studies , Humans , Incidence , Prospective Studies
2.
Zhonghua Liu Xing Bing Xue Za Zhi ; 43(4): 466-477, 2022 Apr 10.
Article in Chinese | MEDLINE | ID: covidwho-1810386

ABSTRACT

The COVID-19 pandemic is still ongoing in the world, the risk of COVID-19 spread from other countries or in the country will exist for a long term in China. In the routine prevention and control phase, a number of local COVID-19 epidemics have occurred in China, most COVID-19 cases were sporadic ones, but a few case clusters or outbreaks were reported. Winter and spring were the seasons with high incidences of the epidemics; border and port cities had higher risk for outbreaks. Active surveillance in key populations was an effective way for the early detection of the epidemics. Through a series of comprehensive prevention and control measures, including mass nucleic acid screening, close contact tracing and isolation, classified management of areas and groups at risk, wider social distancing and strict travel management, the local COVID-19 epidemics have been quickly and effectively controlled. The experiences obtained in the control of the local epidemics would benefit the routine prevention and control of COVID-19 in China. The occurrence of a series of COVID-19 case clusters or outbreaks has revealed the weakness or deficiencies in the COVID-19 prevention and control in China, so this paper suggests some measures for the improvement of the future prevention and control of COVID-19.


Subject(s)
COVID-19 , Epidemics , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Contact Tracing , Epidemics/prevention & control , Humans , Pandemics/prevention & control , SARS-CoV-2
3.
Zhonghua Liu Xing Bing Xue Za Zhi ; 41(5): 657-661, 2020 May 10.
Article in Chinese | MEDLINE | ID: covidwho-546795

ABSTRACT

Objective: To assess the imported risk of COVID-19 in Guangdong province and its cities, and conduct early warning. Methods: Data of reported COVID-19 cases and Baidu Migration Index of 21 cities in Guangdong province and other provinces of China as of February 25, 2020 were collected. The imported risk index of each city in Guangdong province were calculated, and then correlation analysis was performed between reported cases and the imported risk index to identify lag time. Finally, we classified the early warming levels of epidemic by imported risk index. Results: A total of 1 347 confirmed cases were reported in Guangdong province, and 90.0% of the cases were clustered in the Pearl River Delta region. The average daily imported risk index of Guangdong was 44.03. Among the imported risk sources of each city, the highest risk of almost all cities came from Hubei province, except for Zhanjiang from Hainan province. In addition, the neighboring provinces of Guangdong province also had a greater impact. The correlation between the imported risk index with a lag of 4 days and the daily reported cases was the strongest (correlation coefficient: 0.73). The early warning base on cumulative 4-day risk of each city showed that Dongguan, Shenzhen, Zhongshan, Guangzhou, Foshan and Huizhou have high imported risks in the next 4 days, with imported risk indexes of 38.85, 21.59, 11.67, 11.25, 6.19 and 5.92, and the highest risk still comes from Hubei province. Conclusions: Cities with a large number of migrants in Guangdong province have a higher risk of import. Hubei province and neighboring provinces in Guangdong province are the main source of the imported risk. Each city must strengthen the health management of migrants in high-risk provinces and reduce the imported risk of Guangdong province.


Subject(s)
Communicable Diseases, Imported , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , COVID-19 , China/epidemiology , Cities , Epidemiological Monitoring , Humans , Pandemics , Risk Assessment
4.
Zhonghua Yu Fang Yi Xue Za Zhi ; 54(4): 362-366, 2020 Apr 06.
Article in Chinese | MEDLINE | ID: covidwho-324688

ABSTRACT

Objective: To evaluate the exported risk of COVID-19 from Hubei Province and the imported risk in various provinces across China. Methods: Data of reported COVID-19 cases and Baidu Migration Indexin all provinces of the country as of February 14, 2020 were collected. The correlation analysis between cumulative number of reported cases and the migration index from Hubei was performed, and the imported risks from Hubei to different provinces across China were further evaluated. Results: A total of 49 970 confirmed cases were reported nationwide, of which 37 884 were in Hubei Province. The average daily migration index from Hubei to other provinces was 312.09, Wuhan and other cities in Hubei were 117.95 and 194.16, respectively. The cumulative COVID-19 cases of provinces was positively correlated with the migration index derived from Hubei Province, also in Wuhan and other cities in Hubei, with correlation coefficients of 0.84, 0.84, and 0.81. In linear model, population migration from Hubei Province, Wuhan and other cities in Hubei account for 71.2%, 70.1%, and 66.3% of the variation, respectively. The period of high exported risk from Hubei occurred before January 27, of which the risks before January 23 mainly came from Wuhan, and then mainly from other cities in Hubei. Hunan Province, Henan Province and Guangdong Province ranked the top three in terms of cumulative imported risk (the cumulative risk indices were 58.61, 54.75 and 49.62 respectively). Conclusion: The epidemic in each province was mainly caused by the importation of Hubei Province. Taking measures such as restricting the migration of population in Hubei Province and strengthening quarantine measures for immigrants from Hubei Province may greatly reduce the risk of continued spread of the epidemic.


Subject(s)
Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Risk Assessment , Betacoronavirus , COVID-19 , China/epidemiology , Cities , Humans , Linear Models , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL